64 research outputs found

    A free-energy stable nodal discontinuous Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation

    Full text link
    We present a nodal Discontinuous Galerkin (DG) scheme for the Cahn-Hilliard equation that satisfies the summation-by-parts simultaneous-approximation-term (SBP-SAT) property. The latter permits us to show that the discrete free-energy is bounded, and as a result, the scheme is provably stable. The scheme and the stability proof are presented for general curvilinear three-dimensional hexahedral meshes. We use the Bassi-Rebay 1 (BR1) scheme to compute interface fluxes, and an IMplicit-EXplicit (IMEX) scheme to integrate in time. Lastly, we test the theoretical findings numerically and present examples for two and three-dimensional problems

    An Entropy Stable Nodal Discontinuous Galerkin Method for the Two Dimensional Shallow Water Equations on Unstructured Curvilinear Meshes with Discontinuous Bathymetry

    Full text link
    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretisation exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretisation of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem

    A Provably Stable Discontinuous Galerkin Spectral Element Approximation for Moving Hexahedral Meshes

    Full text link
    We design a novel provably stable discontinuous Galerkin spectral element (DGSEM) approximation to solve systems of conservation laws on moving domains. To incorporate the motion of the domain, we use an arbitrary Lagrangian-Eulerian formulation to map the governing equations to a fixed reference domain. The approximation is made stable by a discretization of a skew-symmetric formulation of the problem. We prove that the discrete approximation is stable, conservative and, for constant coefficient problems, maintains the free-stream preservation property. We also provide details on how to add the new skew-symmetric ALE approximation to an existing discontinuous Galerkin spectral element code. Lastly, we provide numerical support of the theoretical results

    Stability of Discontinuous Galerkin Spectral Element Schemes for Wave Propagation when the Coefficient Matrices have Jumps

    Get PDF
    We use the behavior of the L2 norm of the solutions of linear hyperbolic equations with discontinuous coefficient matrices as a surrogate to infer stability of discontinuous Galerkin spectral element methods (DGSEM). Although the L2 norm is not bounded by the initial data for homogeneous and dissipative boundary conditions for such systems, the L2 norm is easier to work with than a norm that discounts growth due to the discontinuities. We show that the DGSEM with an upwind numerical flux that satisfies the Rankine-Hugoniot (or conservation) condition has the same energy bound as the partial differential equation does in the L2 norm, plus an added dissipation that depends on how much the approximate solution fails to satisfy the Rankine-Hugoniot jump

    Entropy-stable discontinuous Galerkin approximation with summation-by-parts property for the incompressible Navier-Stokes equations with variable density and artificial compressibility

    Full text link
    We present a provably stable discontinuous Galerkin spectral element method for the incompressible Navier-Stokes equations with artificial compressibility and variable density. Stability proofs, which include boundary conditions, that follow a continuous entropy analysis are provided. We define a mathematical entropy function that combines the traditional kinetic energy and an additional energy term for the artificial compressiblity, and derive its associated entropy conservation law. The latter allows us to construct a provably stable split-form nodal Discontinuous Galerkin (DG) approximation that satisfies the summation-by-parts simultaneous-approximation-term (SBP-SAT) property. The scheme and the stability proof are presented for general curvilinear three-dimensional hexahedral meshes. We use the exact Riemann solver and the Bassi-Rebay 1 (BR1) scheme at the inter-element boundaries for inviscid and viscous fluxes respectively, and an explicit low storage Runge-Kutta RK3 scheme to integrate in time. We assess the accuracy and robustness of the method by solving the Kovasznay flow, the inviscid Taylor-Green vortex, and the Rayleigh-Taylor instability
    corecore